

Topic Review
Precalculus Handout 1.2
Inequalities and Absolute Value
by Kevin M. Chevalier

Real numbers are ordered where given the real numbers a, b, and c :
$\mathbf{a}<\mathbf{b}$
a "is less than" b
Ex: $1<2$
$\mathbf{c}>\mathbf{b}$
c "is greater than" b
Ex: $3>2$
If a real number is ordered given that b is between a and c from the above example:
$\mathbf{a}<\mathbf{b}<\mathbf{c}$
b "is between" a and c
Ex: $1<2<3$
In the cases above, the numbers are not included in the interval.

Inequality Properties

For real numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and constant k.

1. Transitive Property (our above example)

If a $<\mathrm{b}$ and $\mathrm{b}<\mathrm{c}$, then $\mathrm{a}<\mathrm{c}$
Similarly, if $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{c}$, then $\mathrm{a} \leq \mathrm{c}$

2. Converse Property

If $\mathrm{a}<\mathrm{b}$, then $\mathrm{b}>\mathrm{a}$ (similarly, if $\mathrm{a} \leq \mathrm{b}$, then $\mathrm{b} \geq \mathrm{a}$)
If $a>b$, then $b<a$ (similarly, if $a \geq b$, then $b \leq a$)

3. Addition or Subtraction with a Constant

If $\mathrm{a}<\mathrm{b}$, then $\mathrm{a}+\mathrm{k}<\mathrm{b}+\mathrm{k}$ (similarly, if $\mathrm{a} \leq \mathrm{b}$, then $\mathrm{a}+\mathrm{k} \leq \mathrm{b}+\mathrm{k}$)
If $\mathrm{c}>\mathrm{b}$, then $\mathrm{c}-\mathrm{k}>\mathrm{b}-\mathrm{k}$ (similarly, if $\mathrm{c} \geq \mathrm{b}$, then $\mathrm{c}-\mathrm{k} \geq \mathrm{b}-\mathrm{k}$)

4. Multiplication or Division by a Positive Constant

If $\mathrm{a}<\mathrm{b}$, then $\mathrm{ak}<\mathrm{bk}$ (similarly, if $\mathrm{a} \leq \mathrm{b}$, then $\mathrm{ak} \leq \mathrm{bk}$)
If $\mathrm{c}>\mathrm{b}$, then $\frac{c}{k}>\frac{b}{k}$ (similarly, if $\mathrm{c} \geq \mathrm{b}$, then $\frac{c}{k} \geq \frac{b}{k}$)

5. Multiplication or Division by a Negative Constant

When you multiply or divide an inequality by a negative number, the inequality is reversed.

Example 1.2a: Given the inequality, $-3 \mathrm{x} \leq 6$ solve for x .
First we divide both sides by -3 :
$\frac{-3 x}{-3} \leq \frac{6}{-3}$
Then we reverse the inequality:
$\mathrm{x} \geq-2$

Example 1.2b: Given the inequality, $\frac{x}{-4}>5$, solve for x .
First we multiply both sides by -4 :
$\frac{x}{-4}(-4)>5(-4)$
Then we reverse the inequality:
$\mathrm{x}<-20$

Intervals on the real number line
${ }^{\text {*/For the graphs, see the accompanying inequality graph worksheet. }}$
In open intervals, the endpoints a and b are not included. They are denoted by parentheses (a, b) and when graphed on a number line, the circles are open/hollow.

In closed intervals, the endpoints a and b are included. They are denoted by square brackets [a, b] and when graphed on a number line, the circles are closed/solid.

All real numbers
Notation
Set: $\quad(-\infty, \infty)$
Interval: $\quad\{\mathrm{x} \mid \mathrm{x}$ is a real number\}

Bounded open interval

Notation

Set:	(a, b)
Interval:	$\{x \mid a<x<b\}$

Bounded closed interval Notation
Set: $\quad[a, b]$
Interval: $\quad\{\mathrm{x} \mid \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
Half-closed (half-open) intervals
Notation
Set: [a, b)
(a, b]
Interval: $\quad\{\mathrm{x} \mid \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$
$\{x \mid a<x \leq b\}$
Unbounded open interval
Notation
Set:
$(-\infty$, b)
(a, ∞)
Interval: $\quad\{\mathrm{x} \mid \mathrm{x}<\mathrm{b}\}$ $\{x \mid x>a\}$

Unbounded closed interval
Notation
Set:

$$
(-\infty, b]
$$

$$
[\mathrm{a}, \infty)
$$

Interval: $\quad\{\mathrm{x} \mid \mathrm{x} \leq \mathrm{b}\}$

$$
\{\mathrm{x} \mid \mathrm{x} \geq \mathrm{a}\}
$$

Solving Inequalities
*Graphs to the solutions for the examples are in the inequality graph worksheet.

Example 1.2c
Solve the linear inequality $4 x+3>15$ and graph its solution on the real number line.
$4 \mathrm{x}+3>15$
$4 \mathrm{x}+3-3>15-3$
$\frac{4 x}{4}>\frac{12}{4}$
$x>3$

Subtract 3 from both sides.
Divide both sides by 4 .

Solution

The solution is the set of all x's such that x is greater than $3 ;\{x \mid x>3\}$. In set notation: $(3, \infty)$. Remember, 3 is not included so on the graph it is denoted by an open circle. Since the values for x are greater than 3 , it is unbounded.

Example 1.2d
Solve the linear inequality $-4 \leq 2 x+6 \leq 14$ and graph its solution on the real number line.
$-4 \leq 2 x+6 \leq 14$
$-4-6 \leq 2 x+6-6 \leq 14-6 \quad$ Subtract 6 from all parts.
$-10 \leq 2 x \leq 8$
$-\frac{10}{2} \leq \frac{2 x}{2} \leq \frac{8}{2}$
$-5 \leq x \leq 4$

The solution set is $[-5,4]$.

Example 1.2e
Solve the quadratic inequality $x^{2}+6 x+14 \leq 6$ and graph its solution on the real number line.
$x^{2}+6 x+14 \leq 6$
$x^{2}+6 x+14-6 \leq 6-6 \quad$ Subtract 6 from both sides to change to general form.
$x^{2}+6 x+8 \leq 0$
$(x+4)(x+2) \leq 0$ General form

Factor
When we solve for x, we get $x=-4$ and $x=-2$. We have to test the signs in each test interval to solve the inequality.

There are three intervals that we need to test:
$(-\infty,-4],[-4,-2]$, and $[-2, \infty)$
Step 1: Choose a number in the interval and compute by replacing the x in the polynomial.

The polynomial: $x^{2}+6 x+8$

Interval	Number Chosen in Interval	Answer
$(-\infty,-4]$	-5	3
$[-4,-2]$	-3	-1
$[-2, \infty)$	0	8

So for the interval $(-\infty,-4]$, we choose -5 and put it in the polynomial to test the sign.
$(-5)^{2}+6(-5)+8$
25-30 + 8
3
The polynomial is positive for all real numbers in the interval $(-\infty,-4]$.

For the interval $[-4,-2]$, we choose -3 .
$(-3)^{2}+6(-3)+8$
9-18+8
-1
The polynomial is negative for all real numbers in the interval $[-4,-2]$.

For the interval $[-2, \infty)$, we choose 0 .
$(\mathrm{o})^{2}+6(\mathrm{o})+8$
8
The polynomial is positive for all real numbers in the interval $[-2, \infty)$.
Step 2: Now we look at the original inequality. In this case, the solution is [-4,-2] since the polynomial is negative for all real numbers in this interval.

Absolute Value and Distance on the Real Number Line

The absolute value of a number can't be negative.
If a is a real number:

$$
|\mathrm{a}|=\left\{\begin{array}{l}
a, \text { if } a \geq 0 \\
-a, \text { if } a \leq 0
\end{array}\right.
$$

Example 1.2f: Find the absolute value of -8.

If real number $\mathrm{a}=-8$, then $-8 \leq 0$. So, we use -a .
$|-8|=-\mathrm{a}=-(-8)=8$

Properties of Absolute Value

Let...
a and b be real numbers
n be a positive integer
k be a positive real number
Square root definition:
$|\mathrm{a}|=\sqrt{a^{2}}$
Subadditivity:
$|a+b| \leq|a|+|b|$
Multiplication:
$|\mathrm{ab}|=|\mathrm{a}||\mathrm{b}|$
Quotient:
$\left|\frac{a}{b}\right|=\frac{|a|}{|b|}, \mathrm{b} \neq \mathrm{o}$
Powers:
$\left|\mathrm{a}^{\mathrm{n}}\right|=|\mathrm{a}|^{\mathrm{n}}$
$-|\mathrm{a}| \leq \mathrm{a} \leq|\mathrm{a}|$
$|\mathrm{a}| \leq \mathrm{k}$ if and only if
$|\mathrm{a}|<\mathrm{k}$ if and only if
$|\mathrm{a}| \geq \mathrm{k}$ if and only if
$|\mathrm{a}|>\mathrm{k}$ if and only if
$-\mathrm{k} \leq \mathrm{a} \leq \mathrm{k}$
$-\mathrm{k}<\mathrm{a}<\mathrm{k}$
$\mathrm{a} \leq-\mathrm{k}$ or $\mathrm{a} \geq \mathrm{k}$
$\mathrm{a}<-\mathrm{k}$ or $\mathrm{a}>\mathrm{k}$

Solving Absolute Value Inequalities
Example 1.2g: Solve the inequality $|x+5|<10$
From the property above we can see that $|\mathrm{a}|<\mathrm{k}$ if and only if $-\mathrm{k}<\mathrm{a}<\mathrm{k}$
Therefore, we apply this to our inequality:
$-10<x+5<10$
$-10-5<x+5-5<10-5 \quad$ Subtract 5 from all parts
$-15<x<5$
Solution
The solution set is the single interval $(-15,5)$.

Example 1.2h: Solve the inequality $|x+6| \geq 8$
From the property above we can see that $|\mathrm{a}| \geq \mathrm{k}$ if and only if $\mathrm{a} \leq-\mathrm{k}$ or $\mathrm{a} \geq \mathrm{k}$ Therefore, we apply this to our inequality:
$x+6 \leq-8$ or $x+6 \geq 8$
For $x+6 \leq-8, \quad x \leq-14$
For $x+6 \geq 8, \quad x \geq 2$
The solution set is the union of the disjointed intervals $(-\infty,-14]$ and $[2, \infty)$.

Distance and Midpoint

Distance between two points with real numbers a and b :
$\mathrm{d}=|\mathrm{a}-\mathrm{b}|=|\mathrm{b}-\mathrm{a}|$

Example 1.2i: Find the distance between -6 and 3 .

Let $\mathrm{a}=-6$ and $\mathrm{b}=3$
$d=|a-b|=|-6-3|=|-9|=9$
In both directions, -6 and 3 are 9 units from each other.
From a to b (going left to right), the directed distance would be 9. This is the directed distance from a to b. To compute, we use $b-a$. In this example, $3-(-6)$ which would be $3+6$ to get 9 .

From b to a (going right to left), the directed distance would be -9. This is the directed distance from b to a. To compute, we use $a-b$. In this example, $-6-3$ to get -9 .

The midpoint is the average value of endpoints a and b.
The midpoint of interval (a, b):
$\frac{a+b}{2}$

Example 1.2j: Find the midpoint of the interval [4, 16]
Let $\mathrm{a}=4$ and $\mathrm{b}=16$
$\frac{4+16}{2}=\frac{20}{2}=10$

