

Real numbers are <u>ordered</u> where given the real numbers a, b, and c:

a < b a "**is less than**" b Ex: 1 < 2

```
c > b
c "is greater than" b
Ex: 3 > 2
```

If a real number is ordered given that b is between a and c from the above example:

ae kev

a < **b** < **c** b "**is between**" a and c Ex: 1 < 2 < 3

In the cases above, the numbers are not included in the interval.

Inequality Properties

For real numbers a, b, c, and constant *k*.

1. Transitive Property (our above example)

If a < b and b < c, then a < c Similarly, if a \leq b and b \leq c, then a \leq c

2. Converse Property

If a < b, then b > a (similarly, if a \leq b, then b \geq a) If a > b, then b < a (similarly, if a \geq b, then b \leq a)

3. Addition or Subtraction with a Constant

If a < b, then a + k < b + k (similarly, if $a \le b$, then $a + k \le b + k$) If c > b, then c - k > b - k (similarly, if $c \ge b$, then $c - k \ge b - k$)

4. Multiplication or Division by a Positive Constant

If a < b, then ak < bk (similarly, if a ≤ b, then ak ≤ bk) If c > b, then $\frac{c}{k} > \frac{b}{k}$ (similarly, if c ≥ b, then $\frac{c}{k} \ge \frac{b}{k}$)

5. Multiplication or Division by a Negative Constant

When you multiply or divide an inequality by a negative number, the inequality is <u>reversed</u>.

Example 1.2a: Given the inequality, $-3x \le 6$ solve for x.

First we divide both sides by -3: $\frac{-3x}{-3} \le \frac{6}{-3}$

Then we reverse the inequality: $x \ge -2$

Example 1.2b: Given the inequality, $\frac{x}{-4} > 5$, solve for x.

First we multiply both sides by -4: $\frac{x}{-4}$ (-4) > 5 (-4)

Then we reverse the inequality: x < -20

Intervals on the real number line *For the graphs, see the accompanying inequality graph worksheet.

In **open intervals**, the endpoints a and b are not included. They are denoted by parentheses (a, b) and when graphed on a number line, the circles are open/hollow.

In **closed intervals**, the endpoints a and b are included. They are denoted by square brackets [a, b] and when graphed on a number line, the circles are closed/solid.

All real numbers

NotationSet: $(-\infty, \infty)$ Interval: $\{x \mid x \text{ is a real number}\}$

Bounded open interval

Notation Set: (a, b) Interval: $\{x \mid a < x < b\}$

Bounded c Notation	losed interval	le	cah	ier
Set:	[a, b]			
Interval:	$\{x \mid a \le x \le b\}$			
Half-closed Notation Set:	l (half-open) i r [a, b)	itervals		
Interval:	(a, b] $\{x \mid a \le x < b\}$ $\{x \mid a < x \le b\}$			
Unbounde	d open interval			
Notation	_			
Set:	(-∞, b)	-		
Interval:	(a, ∞) $\{x \mid x < b\}$ $\{x \mid x > a\}$			
Unbounded Notation	d closed interv	al d	le k	ev
	[a,∞)			

Solving Inequalities

 $\{x \mid x \le b\}$

 $\{x \mid x \ge a\}$

*Graphs to the solutions for the examples are in the inequality graph worksheet.

Example 1.2c

Interval:

Solve the linear inequality 4x + 3 > 15 and graph its solution on the real number line.

$4x + 3 > 15 4x + 3 - 3 > 15 - 3 \frac{4x}{4} > \frac{12}{4}$	Subtract 3 from both sides. Divide both sides by 4.
x > 3	Solution

The solution is the set of all x's such that x is greater than 3; $\{x \mid x > 3\}$. In set notation: $(3, \infty)$. Remember, 3 is not included so on the graph it is denoted by an open circle. Since the values for x are greater than 3, it is unbounded.

Example 1.2d Solve the linear inequality $-4 \le 2x + 6 \le 14$ and graph its solution on the real number line.

$-4 \le 2x + 6 \le 14$	
$-4 - 6 \le 2x + 6 - 6 \le 14 - 6$ $-10 \le 2x \le 8$	Subtract 6 from all parts.
$-\frac{10}{2} \le \frac{2x}{2} \le \frac{8}{2}$	Divide all parts by 2.
$-5 \le x \le 4$	Solution
The solution set is [-5, 4].	
Example 1.2e	
solve the quadratic inequation real number line.	ality $x^2 + 6x + 14 \le 6$ and graph its solution on the
$x^2 + 6x + 14 \le 6$	
$x^{2} + 6x + 14 - 6 \le 6 - 6$ $x^{2} + 6x + 8 \le 0$	Subtract 6 from both sides to change to general form. General form
$(x+4)(x+2) \le 0$	Factor

When we solve for x, we get x = -4 and x = -2. We have to test the signs in each test interval to solve the inequality.

There are three intervals that we need to test:

 $(-\infty, -4], [-4, -2], and [-2, \infty)$

Step 1: Choose a number in the interval and compute by replacing the x in the polynomial.

The polynomial: $x^2 + 6x + 8$

Interval	Number Chosen in Interval	Answer
(-∞, -4]	-5	3
[-4, -2]	-3	-1
[-2, ∞)	0	8

So for the interval $(-\infty, -4]$, we choose -5 and put it in the polynomial to test the sign.

(-5)² + 6(-5) + 8
25 - 30 + 8
3
The polynomial is positive for all real numbers in the interval (-∞, -4].
For the interval [-4, -2], we choose -3.

For the interval [-4, -2], we choose -3. $(-3)^2 + 6(-3) + 8$ 9 - 18 + 8 -1 The polynomial is negative for all real numbers in the interval [-4, -2].

```
For the interval [-2, \infty), we choose 0.
(0)<sup>2</sup> + 6(0) + 8
8
The polynomial is positive for all real numbers in the interval [-2, \infty).
```

Step 2: Now we look at the original inequality. In this case, the solution is [-4,-2] since the polynomial is negative for all real numbers in this interval.

Absolute Value and Distance on the Real Number Line

The absolute value of a number can't be negative.

If a is a real number:

$$|\mathbf{a}| = \begin{cases} a, if \ a \ge 0\\ -a, if \ a \le 0 \end{cases}$$

de kev

Example 1.2f: Find the absolute value of -8.

If real number a = -8, then $-8 \le 0$. So, we use -a.

|-8| = -a = -(-8) = 8

Properties of Absolute Value

Let... a and b be real numbers n be a positive integer k be a positive real number

Square root definition: $|\mathbf{a}| = \sqrt{a^2}$

Subadditivity: $|a + b| \le |a| + |b|$

Multiplication: |ab| = |a| |b|

Quotient: $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, b \neq 0$

Powers: $|a^n| = |a|^n$

 $-|a| \le a \le |a|$

$ a \le k$ if and only if	-k ≤ a ≤ k
a < k if and only if	-k < a < k
$ a \ge k$ if and only if	a ≤ -k or a ≥ k
a > k if and only if	a < -k or a > k

Solving Absolute Value Inequalities

Example 1.2g: Solve the inequality |x + 5| < 10

From the property above we can see that |a| < k if and only if -k < a < k

Therefore, we apply this to our inequality:

-10 < x + 5 < 10

-10 - 5 < x + 5 - 5 < 10 - 5 Subtract 5 from all parts

-15 < x < 5

The solution set is the single interval (-15, 5).

Example 1.2h: Solve the inequality $|x + 6| \ge 8$

From the property above we can see that $|a| \ge k$ if and only if $a \le -k$ or $a \ge k$

Solution

er

Therefore, we apply this to our inequality:

 $x + 6 \le -8 \text{ or } x + 6 \ge 8$

For $x + 6 \le -8$, $x \le -14$

For $x + 6 \ge 8$, $x \ge 2$

The solution set is the union of the disjointed intervals $(-\infty, -14]$ and $[2, \infty)$.

Distance and Midpoint

Distance between two points with real numbers a and b:

d = |a - b| = |b - a|

Example 1.2i: Find the distance between -6 and 3.

Let a = -6 and b = 3

d = |a - b| = |-6 - 3| = |-9| = 9

In both directions, -6 and 3 are 9 units from each other.

From a to b (going left to right), the directed distance would be 9. This is the directed distance from a to b. To compute, we use b - a. In this example, 3 - (-6) which would be 3 + 6 to get 9.

From b to a (going right to left), the directed distance would be -9. This is the directed distance from b to a. To compute, we use a - b. In this example, -6 - 3 to get -9.

de kev

The midpoint is the average value of endpoints a and b.

The midpoint of interval (a, b):

 $\frac{a+b}{2}$

Example 1.2j: Find the midpoint of the interval [4, 16]

Let a = 4 and b = 16

 $\frac{4+16}{2} = \frac{20}{2} = 10$