

Topic Review
Precalculus Handout Addendum to 1.2 The Triangle Inequality

by Kevin M. Chevalier

The Triangle Inequality
Let a and b be real numbers,
$|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$
Alternatively the Reverse Triangle Inequality:
$|\mathbf{a}-\mathbf{b}| \geq|\mathbf{a}|-|\mathbf{b}|$

Continuing our discussion on absolute value we will cover an important concept in mathematics called The Triangle Inequality.

The Triangle Inequality states that the length of the two sides $|\mathrm{a}|+|\mathrm{b}|$ is greater than or equal to the length of the third side $|\mathrm{a}+\mathrm{b}|$.
(The absolute value of the sum of $|a+b|$ is always less than or equal to the absolute value of each individual sum $|\mathrm{a}|+|\mathrm{b}|)$.

However, note that $|\mathrm{a}+\mathrm{b}| \neq|\mathrm{a}|+|\mathrm{b}|$ since having opposite signs for real numbers \mathbf{a} and b will result in different values for each side.

For example, let $\mathrm{a}=-1$ and $\mathrm{b}=2$
$|-1+2| \neq|-1|+|2|$
$1 \neq 3$
The left side will result in subtraction while the numbers on the right side are added.

When the values have the same sign (both positive or both negative),
$|\mathrm{a}+\mathrm{b}|=|\mathrm{a}|+|\mathrm{b}|$
For example, let $\mathrm{a}=1$ and $\mathrm{b}=2$
$|1+2|=|1|+|2|$
Both sides will equal 3.

For our next example we'll use negative values, let $a=-1$ and $b=-2$

$|-3|=1+2$
Again, both sides will equal 3 .
Since the statement $|a+b|=|a|+|b|$ is only true when the two values have the same sign, but not when they have opposite signs, the statement can be true only if:
$|\mathrm{a}+\mathrm{b}| \leq|\mathrm{a}|+|\mathrm{b}|$

Remember from the Absolute Value worksheet that
$-|\mathbf{a}| \leq \mathbf{a} \leq|\mathbf{a}|$
is true because if we substitute a real number for "a", the statement is true.
The statement is also true for " b ":
$-|\mathbf{b}| \leq \mathbf{b} \leq|\mathbf{b}|$

If $\mathbf{k}>\mathbf{o}$,
$|\mathbf{a}|=\mathbf{k} \quad$ if and only if $\quad a= \pm \mathbf{k}$
If $k= \pm 1$, and we put the values into $|a|$, then $|-1|$ and the $|1|$ both equal $1(k)$.
So if we add the two statements above for a and b :
$-|\mathbf{a}| \leq \mathbf{a} \leq|\mathbf{a}|$
$+$
$-|\mathbf{b}| \leq \mathbf{b} \leq|\mathbf{b}|$
$-[|\mathbf{a}+\mathbf{b}|] \leq \mathbf{a}+\mathbf{b} \leq|\mathbf{a}|+|\mathbf{b}|$

Also note the absolute value property:
$|\mathrm{a}| \leq \mathrm{k}$ if and only if $\quad-\mathrm{k} \leq \mathrm{a} \leq \mathrm{k}$
From adding the two statements for a and b, we can take the result and apply it to the absolute value property $|\mathrm{a}| \leq \mathrm{k}$:
$\begin{array}{lll}-[|\mathbf{a}+\mathbf{b}|] & \leq & \mathbf{a}+\mathbf{b} \\ -k & \leq \mathbf{a} & \leq \mathbf{a}|+|\mathbf{b}| \\ & \leq\end{array}$
where \mathbf{a} would be substituted for $\mathbf{a}+\mathbf{b}$ and \mathbf{k} would be substituted for $|\mathbf{a}|+|\mathbf{b}|$. From this we get the Triangle Inequality:

$\|\mathrm{a}+\mathrm{b}\|$	\leq	$\|\mathrm{a}\|+\|\mathrm{b}\|$
$\|\mathrm{a}\|$	\leq	k

Now let's apply the Triangle Inequality in an example.

Example 1: If $|x-5|<0.3$ and $|y-7|<0.6$, estimate $|(x+y)-12|$ using the Triangle Inequality.

With the Triangle Inequality we note:

$$
a=x-5
$$

$$
b=y-7
$$

$$
|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|
$$

$$
|(x+y)-12|=|(x-5)+(y-7)|
$$

$$
|(x+y)-12| \leq|x-5|+|y-7|
$$

$$
|(x+y)-12|<0.3+0.6
$$

$$
|(x+y)-12|<0.9
$$

