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Review of Indefinite Integration and Basic 
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As we dive into Calculus II, we will begin with a review of indefinite and definite 
integration.  These topics will refresh what was learned at the end of Calculus I and 
allow us to smoothly transition to applications of integral calculus (where Calculus II 
usually begins).  Please note that this is a review and more thorough definitions are 
covered in the Calculus I notes. 

 
Indefinite Integration (Antidifferentiation) 

 
Let’s begin with a review of a few concepts regarding indefinite integration (or 
antidifferentiation. 
 
Suppose we have the function F(x) = x5.  Through the Power Rule in differentiation, we 
find the function’s derivative: f(x) = 5x4. 
 
The function F(x) is an antiderivative of f(x) on an interval.  F(x) is an antiderivative of 
f(x) if and only if the derivative of F(x) equals f(x).  We can describe this as 
 

𝑭(𝒙) =  ∫ 𝒇(𝒙) 𝒅𝒙 

 
if and only if 

 
𝑭′(𝒙) = 𝒇(𝒙) 

 
Note that “an” is highlighted above.  This is because a function can have many 
antiderivatives.  For our function f(x) = 5x4, it can have antiderivatives such as 
 
 x5 
 x5 - 0.01 
 x5 + e 



 

 

 x5 + 10 
 x5 - 473 
 
etc. 
 
As a result, we note that the function G(x) = x5 + C is the General Antiderivative of the 
function f(x) = 5x4.  C represents the constant of integration.  The function G(x) = x5 
+ C represents the family of antiderivatives for our function f(x) = 5x4.  We can observe 
several members of this family highlighted above where C can represent -0.01, e, 10 or -
473. 
 
With this information, we can extend the definition of the indefinite integral as  
 

∫ 𝒇(𝒙) 𝒅𝒙 = 𝑭(𝒙) + 𝑪 

 
We use our example of f(x) = 5x4 and apply it to this definition: 
 

∫ 𝟓𝒙𝟒 𝒅𝒙 = 𝒙𝟓 + 𝑪 

 
Differentiation and integration are inverse processes of each other.  You can 
differentiate your answer to check your solution. 
 
Let’s take a look at an example. 
 
Example 1.1a 
 
Evaluate the antiderivative (indefinite integral) and verify your solution through 
differentiation. 
 

∫(𝒙𝟐 + 𝟒𝒙 + 𝟐) 𝒅𝒙 

 
This is a polynomial function and we just need to use our integration rules to integrate it. 
 
Step 1: Rewrite our original integral. 
 

∫(𝒙𝟐 + 𝟒𝒙 + 𝟐) 𝒅𝒙 = ∫ 𝒙𝟐 𝒅𝒙 +  ∫ 𝟒𝒙 𝒅𝒙 + ∫ 𝟐 𝒅𝒙 

 
 

Step 2: Apply the Power Rule for Integration and the Constant Multiple 
Rule. 
 

Power Rule: 
 



 

 

∫ 𝒙𝒏 𝒅𝒙 = 
𝒙𝒏+𝟏

𝒏 + 𝟏
+ 𝑪, 𝒏 ≠ −𝟏 

 
 

Constant Multiple Rule: 
 

∫ 𝒌𝒇(𝒙) 𝒅𝒙 = 𝒌 ∫ 𝒇(𝒙) 𝒅𝒙 

 

= ∫ 𝒙𝟐 𝒅𝒙 +  ∫ 𝟒𝒙 𝒅𝒙 + ∫ 𝟐 𝒅𝒙 

 

= ∫ 𝒙𝟐 𝒅𝒙 +  𝟒 ∫ 𝒙 𝒅𝒙 +  ∫ 𝟐 𝒅𝒙 

=  
𝒙𝟑

𝟑
+  

𝟒𝒙𝟐

𝟐
+ 𝟐𝒙 + 𝑪 

 
 
Step 3: Simplify. 
 

=  
𝟏

𝟑
𝒙𝟑 +  𝟐𝒙𝟐 + 𝟐𝒙 + 𝑪 

 
Step 4: Differentiate our result for verification. 
 
Now we can differentiate to verify our result. 
 

𝑑

𝑑𝑥
[
𝟏

𝟑
𝒙𝟑 +  𝟐𝒙𝟐 + 𝟐𝒙 + 𝑪] 

 

=
𝟏

𝟑

𝒅

𝒅𝒙
[𝒙𝟑] + 𝟐

𝒅

𝒅𝒙
[𝒙𝟐] + 𝟐

𝒅

𝒅𝒙
[𝒙] + 

𝒅

𝒅𝒙
 [𝑪] 

=
𝟏

𝟑
(𝟑𝒙𝟐) + 𝟐(𝟐𝒙) + 𝟐(𝟏) +  𝟎 

 
= 𝒙𝟐 + 𝟒𝒙 + 𝟐 
 
 
Now let’s try an example involving trigonometric functions. 
 
Example 1.1b 
 
Evaluate the antiderivative (indefinite integral) and verify your solution through 
differentiation. 
 



 

 

∫
𝐜𝐨𝐬 𝒙

𝐬𝐢𝐧𝟐 𝒙
𝒅𝒙 

 
Step 1: Rewrite the integrand. 
 
In this case, we can write them as products. 
 

∫ (
𝟏

𝐬𝐢𝐧 𝒙
) (

𝐜𝐨𝐬 𝒙

𝐬𝐢𝐧 𝒙
) 𝒅𝒙 

 
Step 2: Simplify further using trigonometric identities. 
 
From our trigonometric identities, we learned that 
 

1

sin 𝑥
= csc 𝑥 

 
cos 𝑥

sin 𝑥
= cot 𝑥 

 
So we get: 

∫ 𝐜𝐬𝐜 𝒙 𝐜𝐨𝐭 𝒙 𝒅𝒙 

 
Step 3: Integrate. 
 
From our basic integration rules, we learned that 
 

∫ csc 𝑥 cot 𝑥 𝑑𝑥 =  − csc 𝑥 + 𝐶 

 
Step 4: Differentiate our result for verification. 
 

𝒅

𝒅𝒙
[−𝒄𝒔𝒄 𝒙 + 𝑪] 

 

= (-1)
𝒅

𝒅𝒙
 [csc x] + 

𝒅

𝒅𝒙
 [C] 

 
= (-1)(-csc x cot x) + 0 
 
= csc x cot x 
 
From here, we have the simplified version of the integrand.  We can expand it further to 
get the original integral in the problem. 
 

 



 

 

Brief Overview of Differential Equations 
 

We’re going to briefly touch on differential equations since we will be covering them in 
the next section when solving initial value problems.  Courses later on will go more in 
depth on ordinary and partial differential equations. 
 
A differential equation is an equation involving derivatives or differentials.  A few 
examples would be 
 

𝑑𝑦

𝑑𝑥
= 4𝑥 + 1 

 
𝑑𝑦

𝑑𝑡
= 6 

 
𝑦′ = cos 𝑥 

 
We learned in differentiation that 
 

𝒅𝒚

𝒅𝒙
= 𝒇′(𝒙) 

 
denotes the derivative of the function y with respect to x. 
 
The differential equation can also be written in differential form where 
 

𝒅𝒚 =  𝒇′(𝒙)𝒅𝒙 
 

As you already noticed, the differential form is what we use throughout integration.  To 
get 𝑓′(𝑥), just find the derivative of the function. 
 
For example, if we have the function y = 7x2 + 9x we can find the differential dy: 
 

𝒅𝒚 =  𝒇’(𝒙)𝒅𝒙 
 

𝑦 = 7𝑥2 + 9𝑥 
 

𝑓’(𝑥)  =  14𝑥 +  9 
 

dy = (14x + 9)dx 
 
 

 
 
 
 
 



 

 

Particular Solutions 
 
We previously learned that there are many solutions to y = ∫ 𝑓(𝑥) 𝑑𝑥 with each solution 
having different constants.  Since it is the constants that differ for the antiderivatives of 
f(x), we can observe that each antiderivative is a vertical translation of each other. 
 
For example, in our example above we can graph a few of the antiderivatives for y = 

∫ 5𝑥4 𝑑𝑥 and observe a few of its solutions.  A few values of C included here are 2.5, -2.5, 
5, and -5. 
 

 
F(x) = x5 + C 

(This is the general solution) 
 
The general solution shows us the antiderivatives for 5x4 and how these 
antiderivatives and their different integer values for C can be a solution to the given 

differential equation,  
𝑑𝑦

𝑑𝑥
= 5𝑥4. 

 
We will now learn how to find a particular solution.  In order to find a particular 
solution, we will need to know the initial condition. 
 



 

 

The initial condition provides the information for one specific value of x for y = F(x).  In 
our above graph, we can observe several values for C.  With the initial condition, we can 
find which value of C inputted into the particular solution passes through the point (x, y). 
 
With the information from the general solution and the initial condition, we can find the 
particular solution.  This type of problem is called an initial value problem.  Let’s 
take a look at an example so that we can visualize this. 
 
Example 1.1c 
 
Find the general solution of F’(x) = 2x + 3 and determine the particular solution that 
satisfies the initial condition F(3) = 9. 
 
Step 1: Find the general solution. 
 
F’(x) = 2x + 3 
 
We begin with F’(x) which we previously learned is the derivative of F(x).  In order to 
find the general solution, we have to integrate F’(x) to get F(x). 
 
F(x) = ∫(2𝑥 + 3) 𝑑𝑥 

F(x) = 2 ∫ 𝑥 𝑑𝑥 + ∫ 3 𝑑𝑥 

F(x) = 2 (
𝑥2

2
) + 3𝑥 + 𝐶 

 
F(x) = x2 + 3x + C 
This is our general solution. 
 
Step 2: Use the initial condition to solve for C. 
 
We are given the initial condition F(3) = 9.  We saw that a function can have many 
antiderivatives.  However, we now know that the curve that we are looking for passes 
through the point (3, 9).  The initial condition allows us to pinpoint and find the 
particular solution. 
 
We use the information from our initial condition and apply it to our general solution to 
solve for C. 
 
F(x) = x2 + 3x + C 
F(3) = (3)2 + 3(3) + C 
 
9 = 9 + 9 + C 
9 = 18 + C 
C = -9 
 
Step 3: Determine the particular solution. 
 



 

 

Now that we’ve obtained C, we can determine the particular solution that satisfies the 
initial condition. 
 
The particular solution that satisfies the initial condition F(3) = 9 is F(x) = x2 + 3x - 9. 
 
 
Example 1.1d 
 
Solve the following initial value problems. 
 
a) 𝑓′(𝑥) =  5𝑥2, f(3) = 20 
b) 𝑦′′ = 8𝑥 − 2 ; 𝑦′(0) = 1; 𝑦(1) = 4 
 
Similar to above, we have to find the general solution, utilize our initial condition, and 
find the particular solution that satisfies the initial condition. 
 
 

For a) 𝒇′(𝒙) = 5x2, f(3) = 20 
 
Step 1: Integrate the derivative to get the general solution. 
 
F(x) = ∫ 5𝑥2  𝑑𝑥 

F(x) = 5 ∫ 𝑥2  𝑑𝑥 

F(x) = 5 (
𝑥3

3
) + C 

 

F(x) = 
𝟓

𝟑
𝒙𝟑 + 𝑪 

 
Step 2: Use the initial condition to solve for C. 
 
f(3) = 20 
 
Similar to our previous example, we use the information from the initial condition to 
solve for C. 
 

F(x) = 
𝟓

𝟑
𝒙𝟑 + 𝑪  

 

F(3) = 
𝟓

𝟑
(𝟑)𝟑 + 𝑪 

 

F(3) = 
𝟓

𝟑
(𝟐𝟕) + 𝑪 

 

F(3) = 
𝟏𝟑𝟓

𝟑
+ 𝑪 

 
20 = 𝟒𝟓 + 𝑪 



 

 

 
C = -25 
 
Step 3: Determine the particular solution. 
 

The particular solution that satisfies the initial condition F(3) = 20 is F(x) = 
𝟓

𝟑
𝒙𝟑 − 𝟐𝟓. 

If you want to factor it out you can write it as F(x) = 
𝟓

𝟑
 (x3 - 15). 

 
 

For b) 𝒚′′ = 𝟖𝒙 − 𝟐; 𝒚′(𝟎) = 𝟏; 𝒚(𝟑) = 𝟏𝟎 
 
When we solve this initial value problem, we have to perform an additional step since 
we are given the second derivative, 𝑦′′ (unlike in our previous example where we began 
with 𝑦′). 
 
Step 1: Integrate the second derivative to get 𝒚′. 
 

𝑦′ =  ∫(8𝑥 − 2) 𝑑𝑥 

 
𝑦′ = 4𝑥2 − 2𝑥 + 𝐶 
 
Step 2: Use the initial condition 𝒚′(𝟎) = 𝟏 and solve for C. 
 
𝑦′ = 4𝑥2 − 2𝑥 + 𝐶 
 
1 = 4(0)2 − 2(0) + 𝐶 
 
C = 1 
 

We can now plug in C to get  𝒚′ = 𝟒𝒙𝟐 − 𝟐𝒙 + 𝟏 
 
Step 3: Perform the same steps to get the general solution. 
 
Now that we have 𝑦′, we can integrate it to get 𝑦. 
 

𝑦 =  ∫(4𝑥2 − 2𝑥 + 1) 𝑑𝑥 

 

𝑦 =
4

3
𝑥3 − 𝑥2 + 𝑥 + 𝐶 

 
 
Use the initial condition 𝒚(𝟑) = 𝟏𝟎 and solve for C. 
 



 

 

10 =
4

3
(3)3 − (3)2 + 3 + 𝐶 

 
10 = 30 + 𝐶 
 
C = -20 
 

The particular solution is 𝒚 =
𝟒

𝟑
𝒙𝟑 − 𝒙𝟐 + 𝒙 − 𝟐𝟎. 


