

Calculus 2 Review
Handout 1.1A (to accompany Handout 1.1) Basic Integration Rules
by Kevin M. Chevalier

Antiderivative of Zero:

$$
\int 0 d x=C
$$

where C is an arbitrary constant

Constant Multiple Rule:

$$
\int k f(x) d x=k \int f(x) d x
$$

where k is any real number

Power Rule for Integration

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1
$$

Special Case of the Power Rule:

in this special case where $\mathrm{n}=0$, the Power Rule implies that:

$$
\int k d x=k x+C
$$

where k is any real number

Sum and Difference Rules

$$
\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x
$$

Basic Integration Rules for Trigonometric Functions

$\int \cos x d x=\sin x+C$	$\int \csc x \cot x d x=-\csc x+C$
$\int \sin x d x=-\cos x+C$	$\int \sec x \tan x d x=\sec x+C$
$\int \sec ^{2} x d x=\tan x+C$	$\int \csc ^{2} x d x=-\cot x+C$

Integration Rules for Exponential Functions

$$
\begin{gathered}
\int e^{x} d x=e^{x}+C \\
\int a^{x} d x=\left(\frac{1}{\ln a}\right) a^{x}+C \\
=\left(\frac{a^{x}}{\ln a}\right)+C
\end{gathered}
$$

Integration Rule for Natural Logarithms

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

Recall from the Power Rule for Integration that n cannot equal -1 (that is $\mathrm{n} \neq-1$). When we want to evaluate $\int x^{-1} d x$, we have to use the natural logarithm rule. The absolute value of $\mathrm{x}(|x|)$ ensures that the value of x is defined for the domain of $\ln x$.

Remember, if x is less than or equal to zero (that is $\mathrm{x} \leq 0$), $\ln x$ is undefined.

We will revisit and expand on these basic integration rules when we review integration by substitution.

For example, with u-substitution

$$
\int \frac{1}{u} d u=\ln |u|+C
$$

rewritten as

$$
\int \frac{d u}{u}=\ln |u|+C
$$

where $\mathbf{d} \boldsymbol{u}=\boldsymbol{u}^{\prime} \boldsymbol{d} \boldsymbol{x}$.
(Please see the differentials section in the accompanying Handout 1.1 for more information)

When we find the antiderivative for

$$
\begin{gathered}
\int \frac{2 x+5}{x^{2}+5 x} d x \\
u=x^{2}+5 x \\
d u=(2 x+5) d x \\
\frac{\boldsymbol{d u}}{2 \boldsymbol{x}+5}=\boldsymbol{d} \boldsymbol{x}
\end{gathered}
$$

We substitute the \boldsymbol{u} in the rule to get our solution:

$$
\int \frac{2 x+5}{x^{2}+5 x} d x=\ln \left|x^{2}+5 x\right|+C
$$

We'll go into more detail when we review substitution, but the steps for this are as follows:

$$
\int \frac{2 x+5}{u} \frac{d u}{2 x+5}
$$

The $2 x+5$ cancels out and simplifies to

$$
\int \frac{1}{u} d u
$$

and from our integration rule for natural logarithms (which leads us to our solution):

$$
\int \frac{1}{u} d u=\ln |u|+C
$$

