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We will continue our review of integral calculus.  In this section we will cover 
summation notation and finding the area of a region. 

 
Sigma Notation 

 
We will begin by briefly discussing sequences, series, and sigma notation.  If you 
recall from earlier mathematics courses, a sequence is an ordered set of objects (in our 
case, the objects will be numbers) containing terms which follow a certain pattern.  In a 
series, each term in the sequence is summed together (we will cover this in greater detail 
when we look at infinite series). 
 
Sigma notation is denoted by 
 

∑ 𝒂𝒊 = 𝒂𝟏 + 𝒂𝟐 + 𝒂𝟑 … + 𝒂𝒏

𝒏

𝒊=𝟏

 

 
where 
 

i is the index of summation (different textbooks may use other letters for the index 
of summation, but i, j, and k are the ones commonly used) 

ai is the ith term of the sum  
n is the upper bound (limit) of summation 
1 is the lower bound (limit) of summation (this is the case for the above notation; 
however, the lower bound of summation can be any integer less than or equal to the 
upper bound) 
 
Regarding the final point above discussing the lower bound of summation, let’s say n = 3, 
i can be any integer equal to or less than 3. 
 
Let’s take a look at a few examples: 



 

 
1. For this example, we just start with the lower bound and sum up the numbers until 
the upper bound.  Since ai = i in our example, we just need to sum up the numbers 
starting with 1 and finishing at 3. 
 

∑ 𝑖 =

3

𝑖=1

1 + 2 + 3 

 
= 6 

 
Later on in this handout we will learn a summation formula that we can apply to this 
series: 
 

∑ 𝒊

𝒏

𝒊=𝟏

=
𝒏(𝒏 + 𝟏)

𝟐
 

 

∑ 𝑖 =

3

𝑖=1

3(3 + 1)

2
 

 

∑ 𝑖 =

3

𝑖=1

12

2
 

 
= 6 

 
Now let’s take a look at an example of a series that is more involved: 
 

∑ 𝒌𝟐 + 𝟏

𝟔

𝒌=𝟏

 

 
2. For this example, we note that the lower bound is 1 and the upper bound is 6.  
However, unlike the previous example, we now have k2 + 1.  Our ai is k2 + 1. 
 
When we do the summation we will to put each number from the lower bound to the 
upper bound (basically from 1 to 6) into k2 + 1 and then we can sum everything up. 
 

∑ 𝒌𝟐 + 𝟏

𝟔

𝒌=𝟏

 

 
=  (12 + 1) + (22 + 1) + (32 + 1) + (42 + 1) + (52 + 1) + (62 + 1) 

 



 

= 2 + 5 + 10 + 17 + 26 + 37 
 

= 97 
 
We can also use another method for example 2 which we will discuss as we take a look at 
the properties of summation. 
 
 

Properties of Summation: 
 

Let k be a constant: 
 

∑ 𝒌𝒂𝒊 = 𝒌 ∑ 𝒂𝒊

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

∑(𝒂𝒊 ± 𝒃𝒊)

𝒏

𝒊=𝟏

= ∑ 𝒂𝒊

𝒏

𝒊=𝟏

± ∑ 𝒃𝒊

𝒏

𝒊=𝟏

 

 
 
We can use the second property for example 2 above: 
 

∑ 𝒌𝟐 + 𝟏

𝟔

𝒌=𝟏

= ∑ 𝒌𝟐

𝟔

𝒌=𝟏

+ ∑ 𝟏

𝟔

𝒌=𝟏

 

 
Now let’s break it down into parts 
 

∑ 𝒌𝟐

𝟔

𝒌=𝟏

 

 
= 12 + 22 + 32 + 42 + 52 + 62 

 
= 91 

 
For this part, we will use an important summation formula which we will see again 
when we look at the table of summation formulas later on in the handout: 
 

∑ 𝟏

𝒏

𝒊=𝟏

= 𝒏 

 



 

∑ 𝟏

𝟔

𝒌=𝟏

 

 
= 6 

 
When we put it together and apply our property: 
 

∑ 𝒌𝟐

𝟔

𝒌=𝟏

+ ∑ 𝟏

𝟔

𝒌=𝟏

 

 
= 91 + 6 

 
= 97 

 
As you can see we get the same result! 
 
Now that we’ve had some practice, it should be easier for you to look at a sum of terms 
and present it in sigma notation. 
 
Suppose you are given a sum and need to express it in sigma notation. 
 
For example: 
 

[𝟒 (
𝟏

𝟓
) − 𝟐] + [𝟒 (

𝟐

𝟓
) − 𝟐] + [𝟒 (

𝟑

𝟓
) − 𝟐] + ⋯ + [𝟒 (

𝟖

𝟓
) − 𝟐] 

 
 
Step 1: Look for the pattern among the terms to find an expression. 
 
When we look at the terms in the series, everything is the same with the exception of 
where I placed x: 
 

[4 (
𝑥

5
) − 2] 

 
Step 2: Find the values that change to determine the upper and lower 
bounds of summation. 
 
In our example, we see that the numerator changes (where x is placed).  The lowest 
number is 1 and the largest number is 8. 
 
The lower bound (limit) of summation is 1. 
 
The upper bound (limit) of summation is 8. 



 

 
Step 3: Write the expression of the sum in sigma notation. 
 
Using our information from Steps 1 and 2: 
 

∑ 𝟒 (
𝒊

𝟓
) − 𝟐

𝟖

𝒊=𝟏

 

 
 

Important Summation Formulas: 
 

∑ 𝟏

𝒏

𝒊=𝟏

= 𝒏 

 

(𝟏) ∑ 𝒄

𝒏

𝒊=𝟏

= 𝒄𝒏 (𝟐) ∑ 𝒊

𝒏

𝒊=𝟏

=
𝒏(𝒏 + 𝟏)

𝟐
 

(𝟑) ∑ 𝒊𝟐

𝒏

𝒊=𝟏

=
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
 (𝟒) ∑ 𝒊𝟑

𝒏

𝒊=𝟏

=
𝒏𝟐(𝒏 + 𝟏)𝟐

𝟒
 

 
Let’s apply these formulas through examples: 
 

-1- 
 

∑ 𝒄 = 𝒄𝒏

𝒏

𝒊=𝟏

 

 

∑ 𝟒

𝟏𝟒

𝒊=𝟏

 

 
= 4(14) 

 
= 56 

 
---------- 

 
-2- 

 



 

∑ 𝒊

𝒏

𝒊=𝟏

=
𝒏(𝒏 + 𝟏)

𝟐
 

 

∑ 𝟑𝒊

𝟏𝟐

𝒊=𝟏

 

 
For this example, we will apply the first property of summation we learned above 
together with this summation formula. 
 

∑ 𝟑𝒊

𝟏𝟐

𝒊=𝟏

= 𝟑 ∑ 𝒊

𝟏𝟐

𝒊=𝟏

 

 
Note that: 

 

∑ 𝑖

12

𝑖=1

=
12(12 + 1)

2
=

156

2
= 78 

 
Put everything together: 

 
= (3)(78) 

 
= 234 

 
---------- 

 
-3- 

 
 

∑ 𝒊𝟐

𝒏

𝒊=𝟏

=
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
 

 
 

∑(𝒊 + 𝟏)𝟐

𝟏𝟎

𝒊=𝟏

 

 
This example will be more involved so I will break this down step by step. 
 
First, we have to expand the binomial: 
 

(i + 1)2 = i2 + 2i + 1 
 



 

we then write it out as 
 

∑(𝒊 + 𝟏)𝟐

𝟏𝟎

𝒊=𝟏

= ∑ 𝒊𝟐 + 𝟐𝒊 + 𝟏

𝟏𝟎

𝒊=𝟏

 

 
Applying all of the formulas and properties that we learned so far: 
  

∑ 𝒊𝟐 + 𝟐𝒊 + 𝟏

𝟏𝟎

𝒊=𝟏

 

 

= ∑ 𝒊𝟐

𝟏𝟎

𝒊=𝟏

+ 𝟐 ∑ 𝒊

𝟏𝟎

𝒊=𝟏

+ ∑ 𝟏

𝟏𝟎

𝒊=𝟏

 

 
Let’s evaluate each term separately and then add them up at the end: 
 

∑ 𝒊𝟐

𝒏

𝒊=𝟏

=
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
 

 

∑ 𝒊𝟐

𝟏𝟎

𝒊=𝟏

 

 

=
10(10 + 1)((2 ∙ 10) + 1)

6
 

 

=
(110)(21)

6
=

2310

6
 

 
= 385 

 
Now to the second part: 
 

𝟐 ∑ 𝒊

𝒏

𝒊=𝟏

= (𝟐) (
𝒏(𝒏 + 𝟏)

𝟐
) 

 

𝟐 ∑ 𝒊𝟐

𝟏𝟎

𝒊=𝟏

 

 



 

= (2) [
10(10 + 1)

2
] 

 

= (2) [
110

2
] 

 
= 110 

 
Finally for the last part: 
 

∑ 𝟏

𝒏

𝒊=𝟏

= 𝒏 

 

∑ 𝟏

𝟏𝟎

𝒊=𝟏

= 𝟏𝟎 

 
We sum all of the terms together: 
 

∑ 𝒊𝟐 + 𝟐𝒊 + 𝟏

𝟏𝟎

𝒊=𝟏

 

 
= 385 + 110 + 10 

 
= 505 

 
---------- 

 
-4- 

 
Let’s do an example with subtraction since we covered addition and the distributive 
property of multiplication in the previous one. 
 

∑(𝒊𝟑 − 𝟏𝟔)

𝟖

𝒊=𝟏

 

 
This one should be easy to do since we already had a lot of practice from our previous 
examples! 
 

∑ 𝒊𝟑

𝒏

𝒊=𝟏

=
𝒏𝟐(𝒏 + 𝟏)𝟐

𝟒
 

 



 

We use our properties: 
 

∑ 𝒊𝟑

𝟖

𝒊=𝟏

− ∑ 𝟏𝟔

𝟖

𝒊=𝟏

 

 
For the first term: 
 

∑ 𝒊𝟑

𝟖

𝒊=𝟏

 

 

=  
𝑛2(𝑛 + 1)2

4
 

 

=  
(8)2(8 + 1)2

4
 

 

=  
(64)(81)

4
=

5184

4
 

 
= 1296 

 
For the second term: 
 

∑ 𝒄

𝒏

𝒊=𝟏

= 𝒄𝒏 

 

∑ 𝟏𝟔

𝟖

𝒊=𝟏

 

 
= (16)(8) 

 
= 128 

 
Perform the summation: 
 

∑ 𝒊𝟑

𝟖

𝒊=𝟏

− ∑ 𝟏𝟔

𝟖

𝒊=𝟏

 

 
= 1296 - 128 

 
= 1168 



 

 
To finish up this section on sigma notation, we will simplify the process of evaluating a 
sum for several values of n.  
 
So far we only had to solve for one value of n in which we applied our summation 
formulas and properties.  Suppose you are given a sum to evaluate for different values of 
n.  For example, 
 

∑
(𝒊 − 𝟏)

𝟒𝒏𝟐

𝒏

𝒊=𝟏

 

 
and I ask you to evaluate the sum for n = 2, 4, 6, 8, and 10.  You can do what we did 
earlier and evaluate the sum for each individual n separately, but it may become tedious.  
Instead, we will now learn a way to rewrite the expression and substitute the given 
values into n. 
 
Let’s take a look at an example. 
 

Evaluate the sum 
 

∑ 𝟒𝒏(𝒊𝟐 + 𝟑)

𝒏

𝒊=𝟏

 

 
for n = 2, 4, 6, and 8. 

 
Step 1: Apply the summation formulas and properties and rewrite the 
expression. 
 
First we distribute the 4n: 
 

∑ 𝑘𝑎𝑖 = 𝑘 ∑ 𝑎𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

 

𝟒𝒏 ∑(𝒊𝟐 + 𝟑)

𝒏

𝒊=𝟏

 

 
the constant k is 4n in our example. 
 
Next we use the second property of summation that we learned 
 



 

∑(𝑎𝑖 ± 𝑏𝑖)

𝑛

𝑖=1

= ∑ 𝑎𝑖

𝑛

𝑖=1

± ∑ 𝑏𝑖

𝑛

𝑖=1

 

and we get 
 

𝟒𝒏 [∑ 𝒊𝟐

𝒏

𝒊=𝟏

+ ∑ 𝟑

𝒏

𝒊=𝟏

] 

 
 
Step 2: Simplify the expression further using the summation formulas. 
 
Now we will rewrite the expressions inside the brackets. 
 
First we begin with 
 

∑ 𝒊𝟐

𝒏

𝒊=𝟏

 

 

=  
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
 

 
Next we rewrite 
 

∑ 𝟑

𝒏

𝒊=𝟏

 

 
= 3n 

 
 
Step 3: Simplify to get the final rewritten expression. 
 
Now that we simplified each part, we can now put everything together: 
 

4𝑛 [(
𝑛(𝑛 + 1)(2𝑛 + 1)

6
) + 3𝑛] 

 

= 4𝑛 [(
(𝑛2 + 𝑛)(2𝑛 + 1)

6
) + 3𝑛] 

 

= 4𝑛 [(
2𝑛3 + 3𝑛2 + 𝑛

6
) + 3𝑛] 

 



 

= 4𝑛 (
2𝑛3 + 3𝑛2 + 𝑛

6
) + 12𝑛2 

 

=  (
2𝑛(2𝑛3 + 3𝑛2 + 𝑛)

3
) + 12𝑛2 

 

=  
𝟒𝒏𝟒 + 𝟔𝒏𝟑 + 𝟐𝒏𝟐

𝟑
+ 𝟏𝟐𝒏𝟐 

 
You can also further simplify it to: 
 

=
4𝑛4 + 6𝑛3 + 2𝑛2

3
+

36𝑛2

3
 

 

=  
𝟒𝒏𝟒 + 𝟔𝒏𝟑 + 𝟑𝟖𝒏𝟐

𝟑
 

 
Sometimes students make mistakes when finding common denominators so if you want 
to keep it simple, you can leave it as is and solve.  Either way you should get the same 
answer. 
 
Now that we have a more simplified expression, we can just plug in our values for n and 
evaluate the sum. 
 

For n = 2: 
 

=  
4(2)4 + 6(2)3 + 2(2)2

3
+ 12(2)2 

 

=
64 + 48 + 8

3
+ 48 

 

=  
120

3
+ 48 

 
= 40 + 48 

 
= 88 

 
If you further simplified using common denominators you can also use: 
 

=
4(2)4 + 6(2)3 + 38(2)2

3
 

 

=
64 + 48 + 152

3
 



 

 

=
264

3
 

 
= 88 

 
Let’s evaluate the sum using the summation formulas that we used earlier in this 
handout (here we let n = 2): 
 

∑ 𝟒𝒏(𝒊𝟐 + 𝟑)

𝒏

𝒊=𝟏

 

 

=  ∑ 8(𝑖2 + 3)

2

𝑖=1

 

 

= 8 ∑(𝑖2 + 3)

2

𝑖=1

 

 

= 8 [∑ 𝑖2

2

𝑖=1

+ ∑ 3

2

𝑖=1

] 

 
Let’s evaluate the sums inside the bracket: 
 
For the first one: 
 

∑ 𝑖2

2

𝑖=1

 

 

=
2(2 + 1)(2(2) + 1)

6
 

 

=  
2(3)(5)

6
 

 

=  
30

6
 

 
= 5 

 
For the second one: 
 



 

∑ 3

2

𝑖=1

 

 
= 3(2) 

 
= 6 

 
Now we go back to our sums: 
 

= 8 [∑ 𝑖2

2

𝑖=1

+ ∑ 3

2

𝑖=1

] 

 

= 8 (∑ 𝑖2

2

𝑖=1

) + 8 (∑ 3

2

𝑖=1

) 

 
= 8(5) + 8(6) 

 
= 40 + 48 

 
= 88 

 
We get the same answer!  The only difference is that having the simplified expression 
with only the n allows us to save time and plug in the values for n instead of going 
through this longer process.  However, it’s your choice to approach the problem with 
whatever is most comfortable for you.  As long as you follow one of the paths above to 
get to the correct conclusion, then everything should be fine. 
 
Now let’s finish up the problem. 
 

For n = 4: 
 

=  
4(4)4 + 6(4)3 + 2(4)2

3
+ 12(4)2 

 

=  
1024 + 384 + 32

3
+ 192 

 

=  
1440

3
+ 192 

 
= 480 +192 

 
= 672 



 

 
Similar to our n = 2 example, you can also use: 
 

∑ 𝟒𝒏(𝒊𝟐 + 𝟑)

𝒏

𝒊=𝟏

 

 

=  ∑ 𝟏𝟔(𝒊𝟐 + 𝟑)

𝟒

𝒊=𝟏

 

 

16 ∑(𝑖2 + 3)

4

𝑖=1

 

 

= 16 [∑ 𝑖2

4

𝑖=1

+ ∑ 3

4

𝑖=1

] 

 

= 16 (∑ 𝑖2

4

𝑖=1

) + 16 (∑ 3

4

𝑖=1

) 

 
= 16(30) + 16(12) 

 
= 480 + 192 

 
= 672 

 
For n = 6: 

 

=  
4(6)4 + 6(6)3 + 2(6)2

3
+ 12(6)2 

 

=  
5184 + 1296 + 72

3
+ 432 

 

=  
6552

3
+ 432 

 
= 2184 + 432 

 
= 2616 

 
Again, to evaluate this you can also use: 
 



 

∑ 𝟒𝒏(𝒊𝟐 + 𝟑)

𝒏

𝒊=𝟏

 

 

=  ∑ 𝟐𝟒(𝒊𝟐 + 𝟑)

𝟔

𝒊=𝟏

 

 
 

For n = 8: 
 

4(8)4 + 6(8)3 + 2(8)2

3
+ 12(8)2 

 

=  
16384 + 3072 + 128

3
+ 768 

 

=  
19584

3
+ 768 

 
= 6528 + 768 

 
= 7296 

 
Again, you can also use: 
 

∑ 𝟒𝒏(𝒊𝟐 + 𝟑)

𝒏

𝒊=𝟏

 

 

=  ∑ 𝟑𝟐(𝒊𝟐 + 𝟑)

𝟖

𝒊=𝟏

 

 

 
 

Limits and the n Variable 
 
In this subsection, we will apply what we had learned in the previous example to 
examine when a sum approaches a limit. 
 
Let’s take a look at an example: 
 
Simplify the expression and find the limit as 𝒏 → ∞. 
 



 

𝐥𝐢𝐦
𝒏→∞

∑
𝟑𝟔𝒊

𝒏𝟐

𝒏

𝒊=𝟏

 

 
We want to find the sum as n approaches infinity.  Similar to what we had done in 
Calculus 1 when we created a table of values to find the limit of f(x) as x approached a 
specific value, we will do the same in this example. 
 
We will evaluate the sum where n = 10, 100, 1000, and 10000. 
 
Step 1: Rewrite the expression to find a formula of the sum of n terms. 
 
Similar to the previous example, we will simplify the expression so that we can just plug 
in our values for n. 
 

∑
𝟑𝟔𝒊

𝒏𝟐

𝒏

𝒊=𝟏

 

 

=  
36

𝑛2
∑ 𝑖

𝑛

𝑖=1

 

 

=  
36

𝑛2
[
𝑛(𝑛 + 1)

2
] 

 

=  
36𝑛2 + 36𝑛

2𝑛2
 

 

=
36𝑛(𝑛 + 1)

2𝑛2
 

 

=  
𝟏𝟖(𝒏 + 𝟏)

𝒏
 

 
Step 2: Evaluate the sum for each value of n and construct a table. 
 

n 
∑

𝟑𝟔𝒊

𝒏𝟐

𝒏

𝒊=𝟏

=
𝟏𝟖(𝒏 + 𝟏)

𝒏
 

10 19.8 

100 18.18 



 

1000 18.018 

10 000 18.0018 

 
When we plug in our n values into the formula: 
 
For example, 
 
n = 10: 
 

=
18(10 + 1)

10
 

 
n = 100: 
 

=
18(100 + 1)

100
 

 
n = 1000 
 

=
18(1000 + 1)

1000
 

 
n = 10 000 
 

=
18(10 000 + 1)

10 000
 

 
We get the values in the table above.  As you can notice from the table, the sum 
approaches 18 (the limit) as n increases to infinity. 
 
Also note that the value of n has to be a positive integer value. 
 
Returning to the beginning of the section, we can also evaluate the limit as follows: 
 

𝐥𝐢𝐦
𝒏→∞

∑
𝟑𝟔𝒊

𝒏𝟐

𝒏

𝒊=𝟏

 

 
We already rewrote the expression and concluded that 
 

∑
𝟑𝟔𝒊

𝒏𝟐

𝒏

𝒊=𝟏

=
𝟏𝟖(𝒏 + 𝟏)

𝒏
 

Thus, 
 



 

𝐥𝐢𝐦
𝒏→∞

𝟏𝟖(𝒏 + 𝟏)

𝒏
 

 

= lim
𝑛→∞

18𝑛 + 18

𝑛
 

 

=  lim
𝑛→∞

(
18𝑛

𝑛
+

18

𝑛
) 

 

=  lim
𝑛→∞

(18 +
18

𝑛
) 

 
= 18 + 0 

 
= 18 

 
The solution matches the value from the table above.  We then conclude that the 

limit of 
𝟏𝟖(𝒏+𝟏)

𝒏
 as n approaches infinity is 18. 

 

 
 

Area 
 
In the beginning of Calculus 1, we looked at two important concepts in calculus: the 
tangent line and the area problem.  In this section, we will go into more detail in regards 
to finding the area of a region that is located between a function. 
 
If you can recall, we used rectangles to approximate the area under the graph when we 
examined the area problem. 
 
Let’s take a look at an example: 
 
Approximate the area of the region that lies between the graph of 
 

𝒇(𝒙) = 𝟖 −
𝒙𝟐

𝟔
 

 
and the x-axis between x = 0 and x = 4 using 4 rectangles. 
 



 

 
The region we are looking at. 

 
Step 1: Find the interval [a, b] and divide it into subintervals of equal widths. 
 
From the given information, our interval is [0, 4]. 
 
n is the number of rectangles (subdivided intervals) we want to divide it into (in this 
example, we want to divide it into 4 rectangles so n = 4) 
 
To divide the interval into n subintervals: 
 

∆𝒙 =
𝒃 − 𝒂

𝒏
 

 

∆𝑥 =  
4 − 0

4
 

 
Δx = 1 



 

 
 

Using the right endpoints 
 
Step 2a: Use the right endpoints of the four intervals we divided to find the 
area of the rectangles.  
 
For the first approximation we will use the right endpoints of the rectangle to find the 
area. 
 
This is where we will apply what we learned in the previous section regarding sums.  We 
will sum the area of the rectangles to make the approximation.  When you look at the 
graph, we start with the right endpoint at x = 1. 
 
We then find the sum of the four rectangles: 
 

∑ 𝒇(𝒊)

𝒏

𝒊=𝟏

(∆𝒙) 

 
n will be the number of rectangles (upper limit of summation) 
f(i) will be the height (taken from the right endpoints) 
Δx will be the width (taken from the value when we divided the interval into subinterval 
rectangles of equal width) 
 
Thus we get 
 

∑ 𝑓(𝑖)(1)

4

𝑖=1

 

 
To find i, multiply i and Δx.  This is what we will put into the x variable in our function.  
In our example, our Δx is 1 so we multiply (i)(1) (this example is simpler so we just need 
to put in i). 
 

**If we doubled the rectangles (8 instead of 4) and ∆𝑥 =
4−0

8
=

1

2
, we would multiply 

(𝑖) (
1

2
) and we get 

𝑖

2
.  We will do an example and double the rectangles after I finish this 

main example)**  
 
f(i) is when we evaluate the function at the right endpoints (basically, you just put i into 
the function): 
 

𝑓(𝑥) = 8 −
𝑥2

6
 

 



 

𝑓(𝑖) = 8 −
𝑖2

6
 

 
Since we are using 4 rectangles, the upper limit of summation is 4 (n = 4). 
 
Let’s find f(i) first and then plug in back into ∑ 𝑓(𝑖)(1)4

𝑖=1 : 
 
 

∑ (8 −
𝑖2

6
)

4

𝑖=1

 

 
Using the properties and summation formulas we learned: 
 

=  ∑ 8

4

𝑖=1

−
1

6
∑ 𝑖2

4

𝑖=1

 

 
Recall: 
 

∑ 8

4

𝑖=1

= 8(4) = 32 

 

(
1

6
) [∑ 𝑖2

4

𝑖=1

] = (
1

6
) [

4(4 + 1)(2(4) + 1)

6
] 

 

= (
1

6
) (30) 

 
= 5 

 
Putting everything together: 
 

=  ∑ 8

4

𝑖=1

−
1

6
∑ 𝑖2

4

𝑖=1

 

 
= 32 - 5 

 
= 27 

 
The area of the four rectangles is 27.  Since the rectangles are inside the region bound by 
the parabola, you can see from the graph that there are some areas missed by the 
rectangles.  We then form the conclusion that the area is greater than 27 (the 
area of the four rectangles). 



 

 

 
The rectangles miss some of the area of the region which is why we have to find the area 
using the left endpoints. 
 
 

Using the left endpoints 
 

Step 2b: Use the left endpoints of the four intervals we divided to find the 
area of the rectangles. 
 
For the second approximation, we will use the left endpoints to find the area within our 
specified region under the parabola.  As you can see from the graph, this time the 
rectangles extend beyond the specified region.  We can conclude that the area of the 
rectangles will be greater than the area of the region (in contrast to Step 2a where the 
area of the rectangles was less than the area of the region). 
 



 

 
The left endpoints touch the parabola this time.  The area of the rectangles is now 
greater than the area of the shaded region. 
 
In Step 2a, we multiplied by i.  For the left endpoints, we multiply by i - 1 since we start 
at the left endpoint of the rectangle. 
 
Since we are using the left endpoints this time we note that the left endpoints are: 
 

∑ 𝑓(𝑖 − 1)(1)

4

𝑖=1

 

 

=  ∑ [8 −
(𝑖 − 1)2

6
]

4

𝑖=1

(1) 

 
Again, we use our summation formulas and rules: 
 

= ∑ [8 −
(𝑖 − 1)2

6
]

4

𝑖=1

 

 



 

=  ∑ 8

4

𝑖=1

−
1

6
∑(𝑖 − 1)2

4

𝑖=1

 

 
For the first term: 
 

∑ 8

4

𝑖=1

= (8)(4) = 32 

 
For the second term: 
 

1

6
∑(𝑖 − 1)2

4

𝑖=1

=
1

6
∑(𝑖2 − 2𝑖 + 1)

4

𝑖=1

 

 
 

=
1

6
[∑ 𝑖2 − ∑ 2𝑖

4

𝑖=1

4

𝑖=1

+ ∑ 1

4

𝑖=1

] 

 

=
1

6
[∑ 𝑖2 − 2 ∑ 𝑖

4

𝑖=1

4

𝑖=1

+ ∑ 1

4

𝑖=1

] 

 
For the second term (part I): 
 

∑ 𝒊𝟐

𝒏

𝒊=𝟏

 

 

=  
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
 

 
 

∑ 𝒊𝟐

𝟒

𝒊=𝟏

 

 

=  
𝟒(𝟒 + 𝟏)(𝟐(𝟒) + 𝟏)

𝟔
 

 
= 30 

 
For the second term (part II): 
 



 

∑ 𝑖

𝑛

𝑖=1

=
𝑛(𝑛 + 1)

2
 

 

2 ∑ 𝑖

4

𝑖=1

= 2 (
4(4 + 1)

2
) 

 
= 20 

 
For the second term (part III): 
 

∑ 𝑐

𝑛

𝑖=1

 

 

∑ 1

4

𝑖=1

= (1)(4) = 4 

 
The final answer to the second term: 
 

1

6
∑(𝑖 − 1)2

4

𝑖=1

=
1

6
∑(𝑖2 − 2𝑖 + 1)

4

𝑖=1

 

 

=
1

6
[30 − 20 + 4] 

 

=  
14

6
 

 
Now we can put it together: 
 

= ∑ [8 −
(𝑖 − 1)2

6
]

4

𝑖=1

 

 

=  ∑ 8

4

𝑖=1

−
1

6
∑(𝑖 − 1)2

4

𝑖=1

 

 

= 32 −
14

6
 

 
Finding a common denominator: 
 



 

32 =  
192

6
 

 
So, 
 

=  
192

6
−

14

6
 

 

=  
178

6
=

89

3
 

 

The area of the four rectangles is  
𝟖𝟗

𝟑
≈ 𝟐𝟗. 𝟔𝟕 

 
This fits with what we concluded at the beginning of this step (Step 2b).  Since the area 
of the rectangles is greater than the area of the region bounded under the parabola, it 
makes sense that the area using the left endpoints is greater than the area using the 
right endpoints. 
 
Step 3: Use the information from the area using the right endpoints and the 
area using the left endpoints to make a conclusion about the area of the 
specified region. 
 
Since the area using the right endpoints is less than the region bounded under the 
parabola and the area using the left endpoints is greater than the region bounded under 
the parabola, we can conclude that the area of the specified region bounded under the 
parabola falls between these two values.  Thus, 
 

27 < area of the region < 29.67 
 

If you recall from when I discussed this in Calculus 1, increasing the number of 
rectangles will give you a closer approximation to the area of the specified region.  For 
our example, let’s double the number of rectangles.  Instead of four rectangles, let’s use 
eight.   
 

The width, ∆𝑥 =
1

2
 since 

𝑏−𝑎

𝑛
=

4−0

8
=

4

8
=

1

2
. 

 

For the right endpoints, we multiply by ½ instead of 1. For the function, we plug in 
1

2
𝑖 

(or you can simplify it and put i into the numerator, 
𝑖

2
).  Since we are using eight 

rectangles, n = 8. 
 
We then perform the summation using the right endpoints: 
 



 

∑ 𝒇(𝒊)

𝒏

𝒊=𝟏

(∆𝒙) 

 
 

= [∑ 8 −
(

𝑖
2)

2

6

8

𝑖=1

] (
1

2
) 

 

= [∑ 8

8

𝑖=1

−
𝑖2

24
] (

1

2
) 

 
When we evaluate using the right endpoints, the sum of the area of the eight rectangles 
is 27.75. 
 
We then perform the summation using the left endpoints: 
 

  

∑ 𝑓(𝑖 − 1) (
1

2
)

8

𝑖=1

 

 

= [∑ 8 −
(

𝑖 − 1
2

)
2

6

8

𝑖=1

] (
1

2
) 

 

= [∑ 8 −
𝑖2 − 2𝑖 + 1

24

8

𝑖=1

] (
1

2
) 

 

= [∑ 8 −
1

24
(∑ 𝑖2

8

𝑖=1

− 2 ∑ 𝑖

8

𝑖=1

+ ∑ 1

8

𝑖=1

)

8

𝑖=1

] (
1

2
) 

 
When we evaluate using the left endpoints, the sum of the area of the eight rectangles is 
around 29.08. 
 
Since the area of the specified region falls between these two areas, we get 
 

27.75 < area of the region < 29.08 
 
As you can see, we get a closer approximation of the area of the region when we 
increase the number of rectangles.  



 

 
 

Upper and Lower Sums for a Region 
 
When we covered the section on the applications of differentiation, we discussed the 
Extreme Value Theorem (EVT).  It basically stated that if a function is continuous 
on a closed interval (in our examples, we noted the interval as [a, b]), the function has a 
minimum and a maximum on the interval. 
 
We can see this through the graph: 
 

 
 
The area of the region is bounded by graph of f, the x-axis under it and the two vertical 
lines x = 3.2 and x = 8.  In this graph for the function f, the interval [a, b] is [3.2, 8]. 
 
In this section, we will dissect the example from the previous section and go into more 
depth explaining the elements when finding the area of a region using rectangles. 
 
In the previous sections, when we wanted to approximate the area of a region we 
divided the bounded interval under the graph into subintervals.  According to EVT, 
since the function is continuous on the closed interval, we know that the function has a 
minimum value and a maximum value in each of the divided subintervals. 
 
f(mi)is the minimum value of f(x) in ith subinterval 
 
f(Mi) is the maximum value of f(x) in ith subinterval 
 
To subdivide the interval into n subintervals (where n is the number of subdivided 
intervals or rectangles) we used 
 



 

∆𝒙 =  
𝒃 − 𝒂

𝒏
 

 
to determine the width of each subinterval (the width of the rectangle). 
 
So if we wanted to subdivide the interval [3, 9] into three subintervals: 
 

∆𝑥 =
9 − 3

3
=

6

3
= 2 

 
In the previous example, we approximated the area using the left endpoints and the 
right endpoints.  The endpoints of the intervals are noted as 
 

𝑎 + 0(∆𝑥) < 𝑎 + 1(∆𝑥) < 𝑎 + 2(∆𝑥) < 𝑎 + 3(∆𝑥) … < 𝑎 + 𝑛(∆𝑥) 
 
a = x0 
a + 0(Δx) 
 
x4 
a + 4(Δx) 
 
b = xn 
a + n(Δx) 
 
We start with a + i(Δx).  Recall when we looked at sigma notation, i is the lower limit of 
summation (the one we start with).  If we have the following: 
 

∑ 𝑖3

6

𝑖=2

 

 
Here the lower limit of summation is 2 and upper limit of summation is 6.   
 
The right endpoints of the intervals will then start with a + 2(Δx), a + 3(Δx), …  and 
continue on to a + 6(Δx). 
 
So if we want to find the right endpoints for the subintervals between [3, 9]: 
 
We divided the subinterval and found the width: Δx = 2. 
 

𝑎 + 𝑖(∆𝑥) 
 

= 3 + 2𝑖 
 
For the left endpoints: 
 

𝑎 + (𝑖 − 1)(∆𝑥) 



 

 
= 3 + 2(𝑖 − 1) 

 
Inscribed rectangles are inside the ith subregion while circumscribed rectangles extend 
beyond the ith subregion. (We’ll look at the diagrams in the next few paragraphs) 
 
The area of the inscribed rectangles is less than or equal to the area of the circumscribed 
rectangles.  In other words, 
 

𝒇(𝒎𝒊)∆𝒙 ≤ 𝒇(𝑴𝒊)∆𝒙 
 
The lower sum is the sum of the areas of the inscribed rectangles.  If you recall from 
the previous example, the areas of the inscribed rectangles did not include all of the area 
of the region. 
 
Let’s look at the graph of x2 on the interval [0, 2]: 

 
Inscribed Rectangles inside the ith subregion 

 
 
When we put everything together, the lower sum 
 

𝒔(𝒏) = ∑ 𝒇(𝒎𝒊)∆𝒙

𝒏

𝒊=𝟏

 



 

 
To include more of the area, we found the areas of the circumscribed rectangles.  This 
overestimated the area of the region since the area of the circumscribed rectangles 
included the area of the region and a little bit more from the rectangles which were not 
part of the region.  The upper sum is the sum of the areas of the circumscribed 
rectangles. 
 
Let’s look at the graph of f(x) = x2 on the interval [0, 1]: 

 
Circumscribed Rectangles extending outside the ith subregion 

 
When we put everything together, the upper sum 
 

𝑺(𝒏) = ∑ 𝒇(𝑴𝒊)∆𝒙

𝒏

𝒊=𝟏

 

 
We then concluded that the area of the region fell between these two areas: 
 

s(n) ≤ area of the region ≤ S(n) 
 
 
Now let’s do an example where we apply the general concepts that we covered here.   
 

 
 



 

Example 
 

Consider a region bounded by the graph of the function, 𝒇(𝒙) =
𝟏

𝟑
𝒙𝟐 + 𝟏 and 

the x-axis between x = 0 and x = 4.  Find the upper and lower sums of the 
region. 
 

 
 

First, note the function, f and the interval: 
 

𝑓(𝑥) =
1

3
𝑥2 + 1 

 
and the interval [a, b] is [0, 4]. 

 
Step 1: Divide the interval into n subintervals with a width of Δx. 
 

∆𝑥 =
𝑏 − 𝑎

𝑛
 

 



 

∆𝑥 =
4 − 0

𝑛
=

4

𝑛
 

 
Step 2: Define the endpoints of the interval. 
 
We can see from the graph that the function is increasing along the interval.  The 
minimum value of the function will occur at the left endpoint.  The maximum value will 
occur at the right endpoint. 
 

The left endpoint is denoted by 
 

𝒎𝒊 = 𝒂 + (𝒊 − 𝟏)∆𝒙 
 

𝑚𝑖 = 0 + (𝑖 − 1) (
4

𝑛
) 

 

=
4(𝑖 − 1)

𝑛
 

 
The right endpoint is denoted by 

 

𝑴𝒊 = 𝒂 + (𝒊)∆𝒙 
 

𝑀𝑖 = 0 + (𝑖) (
4

𝑛
) 

 

=  
4𝑖

𝑛
 

 
Step 3: Evaluate the upper and lower sums using the information from the 
left and right endpoints. 
 

3a: Lower Sum 
 
Since we saw that the minimum value occurred at the left endpoint, we use the left 
endpoints to evaluate the lower sum. 
 

𝒔(𝒏) = ∑ 𝒇(𝒎𝒊)∆𝒙

𝒏

𝒊=𝟏

 

 

=  ∑ 𝑓 (
4(𝑖 − 1)

𝑛
) (

4

𝑛
)

𝑛

𝑖=1

 

 
Now we put it into f(x): 

 



 

=  ∑ [
1

3
(

4(𝑖 − 1)

𝑛
)

2

+ 1] (
4

𝑛
)

𝑛

𝑖=1

 

 

=  [
1

3
∑ (

4

𝑛
)

2

(𝑖 − 1)2

𝑛

𝑖=1

+ ∑ 1

𝑛

𝑖=1

] (
4

𝑛
) 

 

= [
1

3
∑ (

16

𝑛2
) (𝑖2 − 2𝑖 + 1)

𝑛

𝑖=1

+ ∑ 1

𝑛

𝑖=1

] (
4

𝑛
) 

 
Multiply by using the distributive property [a(b+ c) = ab + ac]: 
 

In our case, the a would be 
𝟒

𝒏
. 

 

= [
1

3
∑ (

64

𝑛3
)

𝑛

𝑖=1

(𝑖2 − 2𝑖 + 1) + ∑
4

𝑛

𝑛

𝑖=1

] 

 

=
64

3𝑛3
∑(𝑖2 − 2𝑖 + 1) +

1

𝑛
∑ 4

𝑛

𝑖=1

𝑛

𝑖=1

 

 
Expanding inside the brackets and simplifying: 

 

=
64

3𝑛3
[∑ 𝑖2 − 2 ∑ 𝑖

𝑛

𝑖=1

+ ∑ 1

𝑛

𝑖=1

𝑛

𝑖=1

] + 4 

 
 
Since we already did similar steps in the previous examples, I will just skip those steps: 
 

=
64

3𝑛3
[
2𝑛3 − 3𝑛2 + 𝑛

6
] + 4 

 

=
32(2𝑛2 − 3𝑛 + 1)

9𝑛2
+ 4 

 

=
64𝑛2 − 96𝑛 + 32

9𝑛2
+ 4 

 
Find common denominators to add the first part with the n: 
 

=
64𝑛2 − 96𝑛 + 32

9𝑛2
+

36𝑛2

9𝑛2
 



 

 
Then we can add everything together: 
 

=
64𝑛2 − 96𝑛 + 32 + 36𝑛2

9𝑛2
 

 

=
100𝑛2 − 96𝑛 + 32

9𝑛2
 

 
Simplify: 
 

=
100𝑛2

9𝑛2
−

96𝑛

9𝑛2
+

32

9𝑛2
 

 

=
100

9
−

32

3𝑛
+

32

9𝑛2
 

 
 
When we simplify, we get our lower sum: 
 

𝒔(𝒏) =
𝟏𝟎𝟎

𝟗
−

𝟑𝟐

𝟑𝒏
+

𝟑𝟐

𝟗𝒏𝟐
 

 
 

3b: Upper Sum 
 
Since the maximum value occurred at the right endpoint, we use the right endpoints to 
evaluate the upper sum. 
 

𝑺(𝒏) = ∑ 𝒇(𝑴𝒊)∆𝒙

𝒏

𝒊=𝟏

 

 

We use the same process as we did for the lower sum, but this time, we use 
4𝑖

𝑛
 instead of 

4(𝑖−1)

𝑛
. 

 

𝑆(𝑛) = ∑ 𝑓 (
4𝑖

𝑛
) (

4

𝑛
)

𝑛

𝑖=1

 

 
This one should be relatively easier to work with compared to the lower sum.  
 

= ∑ [
1

3
(

4𝑖

𝑛
)

2

+ 1] (
4

𝑛
)

𝑛

𝑖=1

 

 



 

= ∑ (
4

3𝑛
) (

16

𝑛2
) (𝑖2)

𝑛

𝑖=1

+
4

𝑛
 

 

=
64

3𝑛3
∑ 𝑖2

𝑛

𝑖=1

+
1

𝑛
∑ 4

𝑛

𝑖=1

 

 

=
64

3𝑛3
[
𝑛(𝑛 + 1)(2𝑛 + 1)

6
] +

4𝑛

𝑛
 

 

=
64

3𝑛3
[
2𝑛3 + 3𝑛2 + 𝑛

6
] + 4 

 
 

Simplify: 
 

=
32

3𝑛3
[
2𝑛3 + 3𝑛2 + 𝑛

3
] + 4 

 

=
32(2𝑛2 + 3𝑛 + 1)

9𝑛2
+ 4 

 

=
32(2𝑛2 + 3𝑛 + 1)

9𝑛2
+

36𝑛2

9𝑛2
 

 

=
64𝑛2 + 96𝑛 + 32 + 36𝑛2

9𝑛2
 

 

=
100𝑛2 + 96𝑛 + 32

9𝑛2
 

 

=
100𝑛2

9𝑛2
+

96𝑛

9𝑛2
+

32

9𝑛2
 

 

=
100

9
+

32

3𝑛
+

32

9𝑛2
 

 
When we simplify we get our upper sum: 
 

𝑺(𝒏) =
𝟏𝟎𝟎

𝟗
+

𝟑𝟐

𝟑𝒏
+

𝟑𝟐

𝟗𝒏𝟐
 

 
If you recall from the beginning of this section, the value of the lower sum is less than or 
equal to the value of the upper sum.  We can see this when we completed our example: 
 



 

𝒔(𝒏) =
𝟏𝟎𝟎

𝟗
−

𝟑𝟐

𝟑𝒏
+

𝟑𝟐

𝟗𝒏𝟐
 

 

𝑺(𝒏) =
𝟏𝟎𝟎

𝟗
+

𝟑𝟐

𝟑𝒏
+

𝟑𝟐

𝟗𝒏𝟐
 

 
If n = 2, the lower sum s(n): 
 

𝑠(2) =
100

9
−

32

3(2)
+

32

9(2)2
 

 

=
100

9
−

32

6
+

32

36
 

 

=
400

36
−

192

36
+

32

36
 

 

=
20

3
 

 
If n = 2, the upper sum S(n): 
 

𝑆(2) =
100

9
+

32

3(2)
+

32

9(2)2
 

 

=
100

9
−

32

6
+

32

36
 

 

=
400

36
+

192

36
+

32

36
 

 

=
52

3
 

 
 

𝒔(𝒏) < 𝑺(𝒏) 
 

𝟐𝟎

𝟑
<

𝟓𝟐

𝟑
 

 
However, as the limit of n approaches infinity, the limits of the upper and lower sum are 
equal to each other.  We looked at this at the end of the first section (Limits and the n 
Variable).  When we take the limits of both the upper and lower sums, 
 

𝐥𝐢𝐦
𝒏→∞

𝒔(𝒏) = 𝐥𝐢𝐦
𝒏→∞

𝟏𝟎𝟎

𝟗
−

𝟑𝟐

𝟑𝒏
+

𝟑𝟐

𝟗𝒏𝟐
 

 



 

=
𝟏𝟎𝟎

𝟗
− 𝟎 + 𝟎 

 

=
𝟏𝟎𝟎

𝟗
 

 

𝐥𝐢𝐦
𝒏→∞

𝑺(𝒏) = 𝐥𝐢𝐦
𝒏→∞

𝟏𝟎𝟎

𝟗
+

𝟑𝟐

𝟑𝒏
+

𝟑𝟐

𝟗𝒏𝟐
 

 

=
𝟏𝟎𝟎

𝟗
+ 𝟎 + 𝟎 

 

=
𝟏𝟎𝟎

𝟗
 

 

They both approach the same limit, 
𝟏𝟎𝟎

𝟗
. 

 
 

Area by the Limit Definition 
 

For the following examples, let f be continuous and nonnegative on the interval [a, b]. 
 
 

Example 1 
 
Find the area of the region bounded by the graph f(x) = 3x2 - x3 and the vertical lines x = 
0 and x = 2. 
 
Here is the region we are looking at (the shaded region): 
 



 

 
 
First let’s divide the interval [0, 2] into n subintervals: 
 

∆𝑥 =
𝑏 − 𝑎

𝑛
 

 

=
2 − 0

𝑛
 

 

=
2

𝑛
 

 
We will perform similar steps to what we’ve been doing in our previous examples.  As we 
saw at the end of the previous example, the upper and lower sums are equal to each 
other as n approached infinity (that is, the limit is the same when we found the 
minimum value f(mi) and the maximum value f(Mi)).  We saw in the previous example 

that the area of the region was 
𝟏𝟎𝟎

𝟗
.  This brings back memories of the Squeeze Theorem! 

 
If you recall from the Squeeze Theorem,  
 

Let’s assume 
 

h(x) ≤ f(x) ≤ g(x) 
 

for all x in an open interval containing c (except possibly at c itself) and if 
 

𝐥𝐢𝐦
𝒙→𝒄

𝒉(𝒙) = 𝑳 = 𝐥𝐢𝐦
𝒙→𝒄

𝒈(𝒙) 



 

 
then 

 

𝐥𝐢𝐦
𝒙→𝒄

𝒇(𝒙) = 𝑳 

 
exists. 

 
If we apply this to our previous example,  
 

𝐥𝐢𝐦
𝒏→∞

𝒔(𝒏) = 𝑳 = 𝐥𝐢𝐦
𝒏→∞

𝑺(𝒏) 

 

𝐥𝐢𝐦
𝒏→∞

𝒔(𝒏) =
𝟏𝟎𝟎

𝟗
= 𝐥𝐢𝐦

𝒏→∞
𝑺(𝒏) 

 
then 

 

lim
𝑛→∞

∑ 𝑓(𝑐𝑖)∆𝑥

𝑛

𝑖=1

, 𝑥𝑖−1 ≤ 𝑐𝑖 ≤ 𝑥𝑖 

 

The area of the region will equal the limit above.  The value for xi-1 is the left 

endpoint and the value of xi is the right endpoint. 
 
Also note the following: 
 

1. f is continuous on the interval [a, b] 
2. f is nonnegative on the interval [a, b] 
3. the area is bounded by the x-axis, the graph of f, and the two vertical lines x = a 

and x = b  

4. ∆𝑥 =
𝑏−𝑎

𝑛
 

 
Therefore, we can use any value of x in the ith subinterval (either the left or the right 
endpoints) and the value of the area of the region will be the same. 
 
Let’s use the right endpoints since it’s a bit easier when performing the algebra by hand. 
 
Step 1: Use the right endpoints (noting a choice of any x-value in the ith 
subinterval). 
 

𝒄𝒊 = 𝒂 + (𝒊)∆𝒙 
 

𝑐𝑖 = 0 + (𝑖) (
2

𝑛
) 



 

 

=  
2𝑖

𝑛
 

 
 
 
Step 2: Find the Area of the Region. 
 

We know that f(x) = 3x2 - x3 and 𝒄𝒊 =
𝟐𝒊

𝒏
. 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 =  lim
𝑛→∞

∑ 𝑓(𝑐𝑖)∆𝑥

𝑛

𝑖=1

 

 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 = lim
𝑛→∞

∑ 𝑓 (
2𝑖

𝑛
) (

2

𝑛
)

𝑛

𝑖=1

 

 
 
 
We perform the same process similar to when we found the upper sum, S(n). 
 

=  lim
𝑛→∞

[∑ 3 (
2𝑖

𝑛
)

2

− (
2𝑖

𝑛
)

3𝑛

𝑖=1

] (
2

𝑛
) 

 

= lim
𝑛→∞

[3 ∑
8𝑖2

𝑛3
− ∑

16𝑖3

𝑛4

𝑛

𝑖=1

𝑛

𝑖=1

] 

 

= lim
𝑛→∞

[
24

𝑛3
∑ 𝑖2 −

16

𝑛4
∑ 𝑖3

𝑛

𝑖=1

𝑛

𝑖=1

] 

 

= lim
𝑛→∞

[(
24

𝑛3
) (

𝑛(𝑛 + 1)(2𝑛 + 1)

6
) − (

16

𝑛4
) (

𝑛2(𝑛 + 1)2

4
)] 

 

= lim
𝑛→∞

[(
24

𝑛3
) (

2𝑛3 + 3𝑛2 + 𝑛

6
) − (

16

𝑛4
) (

𝑛4 + 2𝑛3 + 𝑛2

4
)] 

 

= lim
𝑛→∞

[
24(2𝑛3 + 3𝑛2 + 𝑛)

6𝑛3
−

16(𝑛4 + 2𝑛3 + 𝑛2)

4𝑛4
] 

 

= lim
𝑛→∞

[
48𝑛3 + 72𝑛2 + 24𝑛

6𝑛3
−

16𝑛4 + 32𝑛3 + 16𝑛2

4𝑛4
] 

 



 

 

= lim
𝑛→∞

[
192𝑛4 + 288𝑛3 + 96𝑛2

24𝑛4
−

96𝑛4 + 192𝑛3 + 96𝑛2

24𝑛4
] 

 

= lim
𝑛→∞

[
192𝑛4 + 288𝑛3 + 96𝑛2 − 96𝑛4 − 192𝑛3 − 96𝑛2

24𝑛4
] 

 
 

= lim
𝑛→∞

[
96𝑛4 + 96𝑛3

24𝑛4
] 

 

= lim
𝑛→∞

96𝑛4

24𝑛4
+

96𝑛3

24𝑛4
 

 

= lim
𝑛→∞

4 +
4

𝑛
 

 
= 4 + 0 

 
= 4 

 
The area of the region is 4. 

 

 
 

Region Bounded by y-axis 
 
We finish up this handout by finding the area of a region bounded by the y-axis instead 
of the x-axis. 
 
So far the regions in our examples were bounded by the x-axis.  Now we will look at the 
regions bounded by the y-axis.  The good thing is that we just perform the same steps 
that we did when the regions were bounded by the x-axis. 
 

Example 
 
Find the area of the region between the graph of f(y) = y3 and the y-axis over the 
interval 0 ≤ y ≤ 2.  
 
Here is the region we will be looking at: 
 



 

 
 
 
Step 1: Divide the interval into n subintervals. 
 
We know that the interval is [0, 2]. 
 

∆𝑦 =
𝑏 − 𝑎

𝑛
 

 

=
2 − 0

𝑛
=

2

𝑛
 

 
Note that instead of Δx, we use Δy. 
 
Step 2: Find the endpoints ci. 
 
To find the upper endpoints, 
 

𝑐𝑖 = 𝑎 + 𝑖(∆𝑦) 
 

= 0 + 𝑖 (
2

𝑛
) 

 

=  
2𝑖

𝑛
 

 
 



 

 
 
Note that the upper endpoints are touching the graph.  Instead of left and right 
endpoints, we look at the upper and lower endpoints when the region is bounded by the 
y-axis. 
 
Step 3: Use the Limit Definition to find the Area. 
 
Again, we use the limit definition of the area of a region and use Δy instead of Δx. 
 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 =  lim
𝑛→∞

∑ 𝑓(𝑐𝑖)∆𝑦

𝑛

𝑖=1

 

 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 = lim
𝑛→∞

∑ 𝑓 (
2𝑖

𝑛
) (

2

𝑛
)

𝑛

𝑖=1

 

 

= lim
𝑛→∞

∑ (
2𝑖

𝑛
)

3

(
2

𝑛
)

𝑛

𝑖=1

 

 

= lim
𝑛→∞

∑ [(
2

𝑛
)

3

(𝑖)3 (
2

𝑛
)]

𝑛

𝑖=1

 

 

= lim
𝑛→∞

16

𝑛4
∑ 𝑖3

𝑛

𝑖=1

 

 

= lim
𝑛→∞

(
16

𝑛4
) [

𝑛2(𝑛 + 1)2

4
] 

 

= lim
𝑛→∞

(
16

𝑛4
) [

𝑛4 + 2𝑛3 + 𝑛2

4
] 



 

 

= lim
𝑛→∞

(
4(𝑛4 + 2𝑛3 + 𝑛2)

𝑛4
) 

 

= lim
𝑛→∞

(
4𝑛4 + 8𝑛3 + 4𝑛2

𝑛4
) 

 
 

= lim
𝑛→∞

(
4𝑛4

𝑛4
+

8𝑛3

𝑛4
+

4𝑛2

𝑛4
) 

 

= lim
𝑛→∞

(4 +
8

𝑛
+

4

𝑛2
) 

 
= 4 + 0 + 0 

 
= 4 

 
The area of the region is 4. 

 


